

Fig. 1. ORTEP drawing (Johnson, 1965) of the title molecule, with thermal ellipsoids at the 50% probability level.
(Table 2), and the average $\mathrm{U}-\mathrm{Cp}$ (ring-centroid) distance is 2.51 (3) \AA. These distances are similar to those found in $\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{U}$ (Meunier-Piret, Declercq, Germain \& Van Meerssche, 1980). The cyclopentadienyl rings are planar to within $0.023 \AA$ and the silicon atom of the $\mathrm{Me}_{3} \mathrm{Si}$ group is out of the cyclopentadienyl ring plane and pointed away from the U atom by an average distance of $0.21 \AA$. The coordination geometry of the molecule may be described as trigonal planar.

Comparison of the geometrical parameters between the trigonal planar $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ and its pseudotetrahedral complex $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}\left(\mathrm{CNC}_{2} \mathrm{H}_{5}\right)$ shows that the stereochemistry of the base-free compound is only weakly perturbed upon adduct formation. The average $\mathrm{U}-\mathrm{C}$ distances are identical, 2.78 (4) and 2.81 (3) \AA, respectively, as are the $\mathrm{U}-\mathrm{C}$ (ring-centroid) distances of 2.51 and $2.53 \AA$, respectively, given the uncertainty in these values. Further, the average (ring-centroid)- U -(ring-centroid) angle is nearly un-
perturbed as it contracts from 120° in the base-free compound to 119° in the adduct. It is surprising that the stereochemistry of $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ changes so slightly upon coordination with the sterically small ethyl isocyanide. The feeble geometrical change upon coordination with the isocyanide presumably means that the reorganization energy is also very small, which rationalizes why carbon monoxide reversibly binds to $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ (Brennan, Andersen \& Robbins, 1986).

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under contract No. DE-AC03-76SF00098.

References

Brennan, J. G., Andersen, R. A. \& Robbins, J. L. (1986). J. Am. Chem. Soc. 108, 335-336.
Brennan, J. G., Andersen, R. A. \& Zalkin, A. (1986). Inorg. Chem. 25, 1756-1760.
Brennan, J. G. \& Zalkin, A. (1985). Acta Cryst. C41, 1038-1040.
International Tables for X-ray Crystallography (1974). Vol. IV; Table 2.2, pp. 71-102. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C.K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Meunier-Piret, J., Declerco, J.-P., Germain, G. \& Van Meerssche, M. (1980). Bull. Soc. Chim. Belg. 89, 121-124.
Wasserman, H. J., Zozulin, A. J., Moody, D. C., Ryan, R. R. \& Salazar, K. V. (1983). J. Organomet. Chem. 254, 305-310.
Zalkin, A. \& Brennan, J. G. (1985). Acta Cryst. C41, 1295-1297.
Zalkin, A. \& Brennan, J. G. (1987). Acta Cryst. C43, 1919-1922.
Zalkin, A., Brennan, J. G. \& Andersen, R. A. (1987). Acta Cryst. C43, 1706-1708.

Acta Cryst. (1988). C44, 2106-2108

Dimeric Bis(di-tert-butylcyclopentadienyl)uranium Chloride

By Allan Zalkin, Anthony L. Stuart and Richard A. Andersen

Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, CA 94720, USA
(Received 20 April 1988; accepted 29 June 1988)

Abstract

CH}_{3}\right)_{3} \mathrm{C}\right\}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{U}\right]_{2} \mathrm{Cl}_{2}, \quad M_{r}=1256 \cdot 22\), orthorhombic, Pccn, $a=13.040$ (3), $b=17.086$ (3), $c=24.587(3) \AA, \quad V=5478 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.523 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $57.24 \mathrm{~cm}^{-1}, \quad F(000)=2456, \quad T=296 \mathrm{~K}, \quad R=0.027$ [1293 data, $F^{2}>2 \sigma\left(F^{2}\right)$]. Two [$\left(\mathrm{Me}_{3} \mathrm{C}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right] \mathrm{UCl}$ groups form a double chlorine-bridged dimer in which the U atom is bonded to two cyclopentadienyl rings and

0108-2701/88/122106-03\$03.00
to two Cl atoms with $\mathrm{U}-\mathrm{Cp}$ and $\mathrm{U}-\mathrm{Cl}$ distances of 2.516 and 2.856 (4) \AA, respectively.

Introduction. The title compound was prepared as part of a systematic synthetic and X-ray crystallographic study aimed at elucidating the solid state stereochemistry and geometrical alterations in trivalent uranium metallocenes as a function of coordination
© 1988 International Union of Crystallography
environment. It has been shown that the tris-cyclopentadienyl compounds of the type $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{3}(L)$, where R is H or CH_{3} and L is a Lewis base such as an ether, amine, thioether or phosphine, can be isolated (Wasserman, Zozulin, Moody, Ryan \& Salazar, 1983; Zalkin \& Brennan, 1985, 1987; Brennan \& Zalkin, 1985). When R is a sterically large group, such as $\mathrm{Me}_{3} \mathrm{Si}$, the base-free compound $\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}$ is isolated (Brennan, Andersen \& Zalkin, 1986). Increasing the number of bulky substituents on the cyclopentadienyl ring by one gives the dimeric molecule $\left[1,3-\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{4}{ }^{-}\right.$ $\mathrm{U}_{2}(\mu-\mathrm{Cl})_{2}$ (Blake, Lappert, Taylor, Atwood, Hunter \& Zhang, 1986). The title compound, [1,3-($\left.\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5}{ }^{-}$ $\mathrm{H}_{3} \mathrm{l}_{4} \mathrm{U}_{2}(\mu-\mathrm{Cl})_{2}$, is a related member of this series. The latter two compounds are an excellent pair of compounds in which the issue of intramolecular steric effects in two molecules of identical empirical formulae that differ only in the replacement of the Si atoms by C atoms may be addressed. A structural representation of the complex is shown below.

Experimental. The title compound was prepared from $\mathrm{K}\left[1,3-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]$ and UCl_{3} in tetrahydrofuran followed by crystallization from hexane as bright green crystals. An air-sensitive crystal, $0.1 \times 0.1 \times 0.25 \mathrm{~mm}$, was sealed inside a quartz capillary in an argon-filled dry box. X-ray diffraction intensities ($\theta-2 \theta$ scans) were obtained using a modified Picker FACS-I automatic diffractometer equipped with a graphite monochromator. Cell dimensions from 20 reflections, $22<$ $2 \theta<34^{\circ} ; 2 \theta$ scan width $(1.5+0.693 \tan \theta)^{\circ}, 2 \theta$ scan speed $2-8^{\circ} \mathrm{min}^{-1}$; analytical absorption correction, range $1.72-1.90 ; \max (\sin \theta) / \lambda=0.60 \AA^{-1}, h 0$ to 15 , $k-20$ to $19, l 0$ to 14 ; three standard reflections, 1.4%, $1 \cdot 0 \%, 4.3 \%$ variation in standards' intensities from average, intensities adjusted isotropically; 5477 data, 2629 unique (with $1293 F^{2}>2 \sigma$), $R_{\text {int }}=0.072$; structure solved by Patterson and Fourier methods; refined on $F, 254$ parameters; 42 H atoms in calculated positions and fixed isotropic thermal parameters; anisotropic thermal parameters for non-hydrogen atoms; $R=0.12$ for all the data, $R=0.027$ for $F^{2}>2 \sigma$ data, $\quad w R=0.021, \quad S=1.01 ; \quad w=4 F^{2}\left[\sigma^{2}\left(F^{2}\right)+\right.$ $\left.\left(0.02 F^{2}\right)^{2}\right]^{-1}$; max. (shift/ σ) $=0.14$; no extinction correction indicated; max. and min. of ΔF synthesis 3.3

Table 1. Atomic parameters

	$B_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} B_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.			
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
U(1)	4	4	0.29597 (3)	$3 \cdot 38$ (2)
U(2)	$\frac{1}{4}$	1	$0 \cdot 11133$ (2)	3.53 (2)
Cl	0.34838 (28)	$0 \cdot 18173$ (22)	0.20369 (18)	$4 \cdot 2$ (1)
C(1)	0.4315 (12)	0.3388 (10)	0.3085 (6)	$4 \cdot 3$ (6)
C(2)	0.3501 (14)	0.3894 (9)	0.3226 (7)	4.4 (6)
C(3)	$0 \cdot 3094$ (10)	0.3609 (10)	0.3723 (6)	$3 \cdot 1$ (5)
C(4)	0.3638 (12)	0.2915 (9)	0.3847 (8)	$4 \cdot 1$ (5)
C(5)	0.4378 (12)	0.2780 (8)	0.3467 (6)	$3 \cdot 9$ (5)
C(6)	0.3645 (16)	0.3900 (11)	$0 \cdot 1003$ (7)	$5 \cdot 2$ (7)
C(7)	$0 \cdot 2806$ (11)	0.3994 (11)	0.0632 (6)	3.9 (6)
C(8)	$0 \cdot 2990$ (14)	$0 \cdot 3402$ (10)	0.0242 (8)	5.9 (6)
C(9)	0.3883 (14)	0.2977 (9)	0.0336 (7)	4.8 (6)
C(10)	0.4306 (15)	0.3298 (12)	0.0829 (8)	$5 \cdot 2$ (7)
C(11)	0.3325 (14)	0.4719 (10)	0.2998 (11)	$3 \cdot 7$ (5)
C(12)	$0 \cdot 3705$ (15)	0.4785 (9)	0.2431 (8)	8.2 (7)
C(13)	$0 \cdot 3826$ (16)	0.5314 (10)	0.3345 (8)	$8 \cdot 8$ (8)
C(14)	$0 \cdot 2148$ (12)	0.4904 (12)	0.2980 (12)	5.9 (8)
C(15)	0.5267 (12)	0.2195 (9)	0.3504 (7)	4.8 (6)
C(16)	0.5965 (11)	0.2431 (19)	0.3961 (7)	8.9 (7)
C(17)	0.5917 (13)	0.2171 (11)	0.2988 (8)	9.4 (9)
C(18)	0.4880 (13)	0.1375 (11)	0.3635 (10)	10.2 (9)
C(19)	0.2033 (15)	0.4635 (11)	0.0624 (8)	6.4 (8)
C(20)	0.231 (3)	0.5217 (10)	0.0216 (8)	12.5 (10)
C(21)	$0 \cdot 1933$ (15)	0.5066 (11)	0.1174 (10)	9.5 (9)
C(22)	0.0988 (15)	0.4313 (11)	0.0488 (10)	10.7 (9)
C(23)	0.5381 (15)	0.3129 (15)	$0 \cdot 1019$ (10)	$5 \cdot 3$ (8)
C(24)	0.5530 (11)	0.3334 (11)	0.1613 (7)	$7 \cdot 0$ (6)
C(25)	0.6111 (14)	$0 \cdot 3700$ (12)	0.0693 (7)	8.7 (7)
C(26)	0.5748 (15)	0.2329 (22)	0.0929 (11)	11.4 (19)

Table 2. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$

$\langle\mathrm{U}(1)-\mathrm{C}\rangle$	$2.78(4)$	$\mathrm{U}(1)-\mathrm{Cl}$	$2.856(4)$
$\langle\mathrm{U}(2)-\mathrm{C}\rangle$	$2.79(5)$	$\mathrm{U}(2)-\mathrm{Cl}^{\prime}$	$2.857(4)$
$\mathrm{U}(1)-\mathrm{Cp}(1)$	2.516	$\mathrm{U}(1)-\mathrm{U}(2)$	$4.540(1)$
$\mathrm{U}(2)-\mathrm{Cp}(2)$	2.516	$\mathrm{Cl}-\mathrm{Cl}$	$3.468(7)$
$\mathrm{Cp}(1)-\mathrm{U}(1)-\mathrm{Cp}\left(1^{\prime}\right)$	120.2	$\mathrm{Cp}(2)-\mathrm{U}(2)-\mathrm{Cl}^{\prime}$	110.5
$\mathrm{Cp}(2)-\mathrm{U}(2)-\mathrm{Cp}\left(2^{\prime}\right)$	120.9	$\mathrm{Cl}-\mathrm{U}(1)-\mathrm{Cl}^{\prime}$	$74.77(17)$
$\mathrm{Cp}(1)-\mathrm{U}(1)-\mathrm{Cl}$	108.9	$\mathrm{Cl}-\mathrm{U}(2)-\mathrm{Cl}^{\prime}$	$74.73(15)$
$\mathrm{Cp}(1)-\mathrm{U}(1)-\mathrm{Cl}$	117.9	$\mathrm{U}(1)-\mathrm{Cl}-\mathrm{U}(2)$	$105.25(11)$
$\mathrm{Cp}(2)-\mathrm{U}(2)-\mathrm{Cl}$	115.8		

$\mathrm{Cp}(1)$ and $\mathrm{Cp}(2)$ are the centroids of cyclopentadienyl ring atoms $\mathrm{C}(1)-\mathrm{C}(5)$ and $\mathrm{C}(6)-\mathrm{C}(10)$ respectively. $\mathrm{Cp}\left(1^{\prime}\right), \mathrm{Cp}\left(2^{\prime}\right)$ and Cl^{\prime} represent the equivalent groups or atoms at $\frac{1}{2}-x, \frac{1}{2}-y, z$.
and $-3.7 \mathrm{e} \AA^{-3}$; atomic f for neutral U, Cl and C , and spherical bonded H from International Tables for X-ray Crystallography (1974); local unpublished programs and ORTEP (Johnson, 1965). Atomic parameters are listed in Table 1.* A list of selected distances and angles is given in Table 2. Fig. 1 shows the molecule and its numbering scheme.

Discussion. The compound is a dimer in which the U atom is bonded to two cyclopentadienyl rings in a penta-

[^0]hapto fashion and to two chlorides which bridge the two U atoms. The cyclopentadienyl rings are rigorously planar but the tertiary C atoms of the tert-butyl groups are out of the cyclopentadienyl ring plane and directed away from the U atom by an average of 0.27 (4) \AA. The rings of the bent sandwich molecule are in a staggered configuration with respect to each other about both the $\mathrm{U}(1)$ and $\mathrm{U}(2)$ atoms. The averaged $\mathrm{U}-\mathrm{C}$ distance of 2.79 (4) \AA and the $\mathrm{U}-\mathrm{Cp}$ (centroid) distance of $2.51 \AA$ are not significantly different from these values in other trivalent uranium metallocenes. The averaged $\mathrm{U}-\mathrm{Cl}$ distance of 2.856 (1) \AA is in the range found in other trivalent uranium compounds with bridging chloride ligands which range from 2.78 (1) \AA in $\left[\left(\mathrm{Me}_{6} \mathrm{C}_{6}\right)_{3}\right] \mathrm{U}_{3}\left(\mu-\mathrm{Cl}_{3}\left(\mu_{3}-\mathrm{Cl}_{2}\left(\mu-\mathrm{Cl}_{2} \mathrm{AlCl}_{2}\right)_{3}\left(\mathrm{AlCl}_{4}\right)(\mathrm{Cot}-\right.\right.$ ton, Schwotzer \& Simpson, 1986), 2.810 (1) \AA in [1,3-($\left.\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{4} \mathrm{U}_{2}(\mu-\mathrm{Cl})_{2}$ (Blake, Lappert, Taylor, Atwood, Hunter \& Zhang, 1986), and 2.90 (1) \AA in $\left[\mathrm{Me}_{5} \mathrm{C}_{5}\right]_{6} \mathrm{U}(\mu-\mathrm{Cl})_{3}$ (Fagan, Manriquez, Marks, Day, Vollmer \& Day, 1982).

A comparison between the geometrical parameters in $\left[1,3-\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{4} \mathrm{U}_{2}(\mu-\mathrm{Cl})_{2}\right.$ and $[1,3-$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{4} \mathrm{U}_{2}(\mu-\mathrm{Cl})_{2}$ is shown in Table 3. The $\mathrm{U}-\mathrm{Cl}$ distance in the $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}$ compound is $0.046 \AA$ longer and the $\mathrm{U} \cdots \mathrm{U}$ distance is $0.183 \AA$ longer than the equivalent distances in the $\left(\mathrm{Me}_{3}{ }^{-}\right.$ $\mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}$ compound. As a consequence the $\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$ in the $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}$ compound is closed by 4°, the $\mathrm{Cp}-\mathrm{U}-\mathrm{Cp}$ angle is closed by 11° and the $\mathrm{U}-\mathrm{Cl}-\mathrm{U}$

Fig. 1. ORTEP drawing (Johnson, 1965) with thermal ellipsoids at 50% probability level.

Table 3. Bond lengths and angles comparison

	$\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{4} \mathrm{U}_{2}(\mu-\mathrm{Cl})_{2}\right.$	$\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{4} \mathrm{U}_{2}(\mu-\mathrm{Cl})_{2}$
$\mathrm{U}-\mathrm{C}($ ave $)(\AA)$	$2.78(2)$	$2.78(4)$
$\mathrm{U}-\mathrm{Cp}($ ave $)(\AA)$	2.50	2.52
$\mathrm{U}-\mathrm{Cl}($ ave $)(\AA)$	$2.710(4)$	$2.856(1)$
$\mathrm{U} \cdots \mathrm{U}(\AA)$	$4.357(1)$	$4.540(1)$
$\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}\left({ }^{\circ}\right)$	$78.5(1)$	$74.7(2)$
$\mathrm{Cl}-\mathrm{U}-\mathrm{Cp}($ ave $)\left(^{\circ}\right)$	107	113
$\mathrm{Cp}-\mathrm{U}-\mathrm{Cp}($ ave $)\left(^{\circ}\right)$	131	120
$\mathrm{U}-\mathrm{Cl}-\mathrm{U}\left({ }^{\circ}\right)$	101.5	$105.3(1)$

angle is opened by 4° relative to the equivalent angles in the $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{5} \mathrm{C}_{5}$ compound. The geometry changes are small though they may be rationalized by the well established fact that $\mathrm{Me}_{3} \mathrm{C}$ groups are sterically larger than $\mathrm{Me}_{3} \mathrm{Si}$ groups. Thus the $\left(\mathrm{Me}_{3} \mathrm{C}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right.$ groups cannot approach each other as close as the $\left(\mathrm{Me}_{3}{ }^{-}\right.$ $\mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}$ groups can, and this accounts for the geometry changes listed in Table 3.

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under contract No. DE-AC03-76SF00098.

References

Blake, P. C., Lappert, M. F., Taylor, R. G., Atwood, J. L., Hunter, W. E. \& Zhang, H. (1986). J. Chem. Soc. Chem. Commun. pp. 1394-1395.
Brennan, J. G., Andersen, R. A. \& Zalkin, A. (1986). Inorg. Chem. 25, 1756-1760.
Brennan, J. G. \& Zalkin, A. (1985). Acta Cryst. C41, 1038-1040.
Cotton, F. A., Schwotzer, W. \& Simpson, C. Q. (1986). Angew. Chem. Int. Ed. Engl. 25, 637-639.
fagan, P. J., Manriquez, J. M., Marks, T. J., Day, C. S., Vollmer, S. H. \& Day, V. W. (1982). Organometallics, 1, 170-180.
International Tables for X-ray Crystallography (1974). Vol. IV; Table 2.2, pp. 71-102. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Wasserman, h. J., Zozulin, A. J., Moody, D. C., Ryan, R. R. \& Salazar, K. V. (1983). J. Organomet. Chem. 254, 305-311.
Zalkin, A. \& Brennan, J. G. (1985). Acta Cryst. C41, 1295-1297.
Zalkin, A. \& Brennan, J. G. (1987). Acta Cryst. C43, 1919-1922.

[^0]: * Lists of anisotropic thermal parameters, calculated hydrogen positions, least-squares planes, distances and angles and additional ORTEP drawings have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51197 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

